technique of estimation - translation to ρωσικά
DICLIB.COM
AI-based language tools
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:     

Μετάφραση και ανάλυση λέξεων από τεχνητή νοημοσύνη

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

technique of estimation - translation to ρωσικά

Estimation of Distribution Algorithm; Estimation of Distribution Algorithms; PMBGA

technique of estimation      

математика

методика оценивания

technique of estimation      
методика оценивания
estimation         
  • The exact number of candies in this jar cannot be determined by looking at it, because most of the candies are not visible. The amount can be estimated by presuming that the portion of the jar that cannot be seen contains an amount equivalent to the amount contained in the same volume for the portion that can be seen.
PROCESS OF FINDING AN ESTIMATE, OR APPROXIMATION, WHICH IS A VALUE THAT IS USABLE FOR SOME PURPOSE EVEN IF INPUT DATA MAY BE INCOMPLETE, UNCERTAIN, OR UNSTABLE
Overestimate; Estimated; Estimating; Calculated guess; Estimate
1) расчёт, подсчёт, вычисление
2) оценка
3) калькуляция; смета
analytical estimation
1) аналитический расчёт
2) аналитическая оценка

Ορισμός

грип
ГРИП, ГРИПП, гриппа, ·муж. (·франц. grippe) (мед.). Инфекционная болезнь - катарральное воспаление дыхательных путей, сопровождаемое лихорадочным состоянием; то же, что инфлуэнца
.

Βικιπαίδεια

Estimation of distribution algorithm

Estimation of distribution algorithms (EDAs), sometimes called probabilistic model-building genetic algorithms (PMBGAs), are stochastic optimization methods that guide the search for the optimum by building and sampling explicit probabilistic models of promising candidate solutions. Optimization is viewed as a series of incremental updates of a probabilistic model, starting with the model encoding an uninformative prior over admissible solutions and ending with the model that generates only the global optima.

EDAs belong to the class of evolutionary algorithms. The main difference between EDAs and most conventional evolutionary algorithms is that evolutionary algorithms generate new candidate solutions using an implicit distribution defined by one or more variation operators, whereas EDAs use an explicit probability distribution encoded by a Bayesian network, a multivariate normal distribution, or another model class. Similarly as other evolutionary algorithms, EDAs can be used to solve optimization problems defined over a number of representations from vectors to LISP style S expressions, and the quality of candidate solutions is often evaluated using one or more objective functions.

The general procedure of an EDA is outlined in the following:

t := 0
initialize model M(0) to represent uniform distribution over admissible solutions
while (termination criteria not met) do
    P := generate N>0 candidate solutions by sampling M(t)
    F := evaluate all candidate solutions in P
    M(t + 1) := adjust_model(P, F, M(t))
    t := t + 1

Using explicit probabilistic models in optimization allowed EDAs to feasibly solve optimization problems that were notoriously difficult for most conventional evolutionary algorithms and traditional optimization techniques, such as problems with high levels of epistasis. Nonetheless, the advantage of EDAs is also that these algorithms provide an optimization practitioner with a series of probabilistic models that reveal a lot of information about the problem being solved. This information can in turn be used to design problem-specific neighborhood operators for local search, to bias future runs of EDAs on a similar problem, or to create an efficient computational model of the problem.

For example, if the population is represented by bit strings of length 4, the EDA can represent the population of promising solution using a single vector of four probabilities (p1, p2, p3, p4) where each component of p defines the probability of that position being a 1. Using this probability vector it is possible to create an arbitrary number of candidate solutions.

Μετάφραση του &#39technique of estimation&#39 σε Ρωσικά